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Decoding the Matrix

High-dimensional, low-

sample-size scenarios 

(e.g., financial datasets, 

machine learning) pose 

unique statistical 

challenges and exhibit 

distinct properties for 

covariance matrices.

Two key metrics derived from 

this process:

1. Fraction of variance 

explained by the leading 

eigenvalue.

2. Average pairwise correlation.

Key question: 

What is the relationship 

between these metrics, and 

why is it important? 

Assume a few key drivers 

dominate market covariance. 

Spectral decomposition of 

the sample return data's 

covariance matrix yields:

• Eigenvalues and 

eigenvectors representing 

market structure



Empirical Test

MARKETS
Daily returns for constituent stocks 
of the US S&P 500 and China CSI 
300.

DATE RANGE
2000/01/01 – 2023/12/31

STEPS

1. One year's worth of daily returns were used to estimate covariance.
2. The fraction of variance explained by the leading eigenvalue was calculated.
3. The average correlation among all pairs of constituent stock returns was 

computed.
4. This process was repeated for each subsequent year, comparing the 

fraction of variance explained by the leading eigenvalue with the average 
correlation for each year.



The US S&P 500 Constituents

A Linear Relationship between the Two Metrics
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China CSI 300 Constituents
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A Linear Relationship between the Two Metrics



Simulation Test



Simulation Test

A strong relationship between the fraction of variance explained by the leading eigenvalue and the average correlation has been observed. An analysis on this is, in 
one-factor model:

𝑟𝑟𝑖𝑖 = 𝛽𝛽𝑖𝑖𝑓𝑓 + 𝜖𝜖𝑖𝑖

Under assumptions: 𝐸𝐸 𝜖𝜖𝑖𝑖 = 0,𝐸𝐸 𝜖𝜖𝑖𝑖𝑓𝑓 = 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝐸𝐸 𝜖𝜖𝑖𝑖𝜖𝜖𝑗𝑗 = 0, the formula for correlation 𝜌𝜌(𝑖𝑖, 𝑗𝑗) between securities 𝑖𝑖 and 𝑗𝑗 becomes:

𝜌𝜌 𝑖𝑖, 𝑗𝑗 =
𝛽𝛽𝑖𝑖𝛽𝛽𝑗𝑗𝜎𝜎2

𝛽𝛽𝑖𝑖2𝜎𝜎2 + 𝛿𝛿𝑖𝑖
2 𝛽𝛽𝑗𝑗2𝜎𝜎2 + 𝛿𝛿𝑗𝑗

2

When ① exposures to the factor, 𝛽𝛽 have low dispersion and are equal to 1/ 𝑝𝑝

          ② specific variances are identical

𝜌𝜌 𝑖𝑖, 𝑗𝑗 ≈
𝜎𝜎2/𝑝𝑝
𝜎𝜎2
𝑝𝑝 + 𝛿𝛿2

                                                                                                                             = 𝜎𝜎2

𝜎𝜎2+𝑝𝑝𝛿𝛿2

𝑝𝑝 - number of securities

Next Pages:

Simulate scenarios ① and ② to test effect on relationship between average correlation �𝝆𝝆 𝒊𝒊, 𝒋𝒋  and Fraction of Variance Explained 

by the leading eigenvalue. 



One-factor Simulation Setup

Simulate 500 securities with 252 returns, 

              Simulate 𝑓𝑓 in normal distribution, shape 1 x 252, 𝜇𝜇𝑓𝑓 = 0, 𝜎𝜎𝑓𝑓 = 0.16/ 252

        ① Simulate 𝛽𝛽 in normal distribution, shape 500 x 1, 𝜇𝜇𝛽𝛽 = 1, 𝜎𝜎𝛽𝛽 from 0.25 to 0.05, 𝛽𝛽 becoming less dispersed.

        ② Simulate 𝜖𝜖 in normal distribution, shape 500 x 252, 𝜇𝜇𝜖𝜖 = 0, 𝜎𝜎𝜖𝜖 from 0.5/ 252 to 0.1/ 252, 𝑒𝑒 becoming less 
dispersed, 𝛿𝛿2 becoming more identical.

Each setup is experimented 30 times to create box plots

In one-factor model:

𝑟𝑟𝑖𝑖 = 𝛽𝛽𝑖𝑖𝑓𝑓 + 𝜖𝜖𝑖𝑖



Simulation Result

Relationship between Fraction of Variance Explained by the Leading Eigenvalue and Average Correlation in a controlled environment
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Simulation Result: Reducing Beta Dispersion 

When reducing beta dispersion, diff decreases

① when exposures to the factor, 𝛽𝛽 have low dispersion

*Diff: FracVar - AvgCorr

𝜌𝜌 𝑖𝑖, 𝑗𝑗 =
𝜷𝜷𝒊𝒊𝜷𝜷𝒋𝒋𝜎𝜎2

𝜷𝜷𝒊𝒊𝟐𝟐𝜎𝜎2 + 𝛿𝛿𝑖𝑖
2 𝜷𝜷𝒋𝒋𝟐𝟐𝜎𝜎2 + 𝛿𝛿𝑗𝑗

2

𝜎𝜎𝛽𝛽 ↓ → diff% ↓



Simulation Result: Reducing Beta Dispersion 

When reducing specific risk dispersion, diff decreases

② when specific variances are identical

𝜌𝜌 𝑖𝑖, 𝑗𝑗 =
𝛽𝛽𝑖𝑖𝛽𝛽𝑗𝑗𝜎𝜎2

𝛽𝛽𝑖𝑖2𝜎𝜎2 + 𝜹𝜹𝒊𝒊
𝟐𝟐 𝛽𝛽𝑗𝑗2𝜎𝜎2 + 𝜹𝜹𝒋𝒋

𝟐𝟐

𝜎𝜎𝜖𝜖 ↓ → diff% ↓



What’s Next:

Estimate Correlation Matrix 
with Different Numbers of Factors



Estimating Correlation Matrix

𝑁𝑁𝑜𝑜𝑡𝑡𝑒𝑒: 𝑆𝑆𝑡𝑡𝑒𝑒𝑝𝑝𝑠𝑠 𝑡𝑡𝑜𝑜 𝑒𝑒𝑠𝑠𝑡𝑡𝑖𝑖𝑚𝑚𝑎𝑎𝑡𝑡𝑒𝑒 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑎𝑎𝑚𝑚𝑝𝑝𝑙𝑙𝑒𝑒 𝑐𝑐𝑜𝑜𝑟𝑟𝑟𝑟𝑒𝑒𝑙𝑙𝑎𝑎𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛 𝑚𝑚𝑎𝑎𝑡𝑡𝑟𝑟𝑖𝑖𝑥𝑥

1. Assuming that a few key drivers account for most of the market 
correlation, let's suppose the S&P 500 stock returns data follow a factor 
model.

2. Center returns data to mean zero and compute 𝒑𝒑 ×  𝒑𝒑 sample covariance 
matrix 𝑺𝑺 from daily returns data.

3. Spectral decomposition of the covariance matrix:
The sample covariance matrix 𝑆𝑆 can be decomposed into its eigenvalues and 
eigenvectors:

𝑆𝑆 = �
𝑖𝑖=1

𝑝𝑝

λ𝑖𝑖𝑣𝑣𝑖𝑖𝑣𝑣𝑖𝑖⊤

where 𝜆𝜆𝑖𝑖 are the eigenvalues and 𝑣𝑣𝑖𝑖 are the corresponding eigenvectors of 𝑆𝑆. 
These eigenvalues are sorted such that 𝜆𝜆1 ≥ 𝜆𝜆2 ≥ ⋯ ≥ 𝜆𝜆𝑝𝑝 ≥ 0.

4. Use 𝒌𝒌 factors to estimate covariance and replace the small components 
with matrix 𝒈𝒈. 

𝑆𝑆 = �
𝑖𝑖=1

𝑘𝑘

λ𝑖𝑖𝑣𝑣𝑖𝑖𝑣𝑣𝑖𝑖⊤ + 𝑔𝑔

5. Estimate diagonal terms on matrix 𝒈𝒈 using a heterogeneous or a 

homogeneous specific variance matrix.

① Heterogeneous specific variance estimation (credit to Alex Bernstein):

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑔𝑔 =  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑆𝑆 −�
𝑖𝑖=1

𝑘𝑘

λ𝑖𝑖𝑣𝑣𝑖𝑖𝑣𝑣𝑖𝑖⊤

② Homogeneous specific variance estimation:

𝛿𝛿2 =
𝑛𝑛
𝑝𝑝

ℓ2

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑔𝑔 = 𝛿𝛿2𝐼𝐼

ℓ2 − Average of remaining non−zero eigenvalues

 𝐼𝐼 − Identity matrix 

6. Convert the estimated covariance matrix to a correlation matrix by 

dividing means of variances.



Changing factor number to estimate sample correlation matrix

The average correlation remains largely unchanged after estimating the correlation matrix 
with 4 factors

∗Diff = FracVar − AvgCorr
n: 249   p:497 n: 249   p:497

Sample Correlation Matrix 



Changing factor number to estimate LW target constant correlation matrix

n: 249   p:497 n: 249   p:497

LW Target Constant Correlation Matrix 



Changing factor number to estimate LW target constant correlation matrix

n: 249   p:497 n: 249   p:497

LW Estimator Matrix 
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